

PARMA PAGANINI CONGRESSI ITALY

Validation of Automotive Control Applications using Formal Methods and metamodeling techniques

Simone Silvetti, Esteco Spa & University Udine
Mariapia Marchi, Esteco Spa

process aimed at designing complex systems

cost reduction

reduce development time

 Use of block diagram tools (Simulink, Gt suite)

 Powerful Tools but complex

 Use of block diagram tools (Simulink, Gt suite)

 Powerful Tools but complex

- Use of natural languages
- Involves time events...

- Not rigorous
- Not Machine interpretable

1	

- Use of natural languages
- Involves time events...

- Not rigurous
- Not Machine interpretable

1	

- Use of natural languages
- Involves time events...

- Not rigurous
- Not Machine interpretable

φ

Robustness Semantics

F Φ ?

Robustness Semantics

Boolean	
yes/no	

Robustness Semantics

F(f>k)

The goal

The goal

$$\mathsf{R} = \min_{\mathsf{f} \in \mathsf{F}} [\mathsf{M}(\mathsf{f}), \boldsymbol{\Phi}]$$

The goal

Challenges

Low number of model execution

Inputs are functions (temporal series)!!

Challenges

Low number of model execution

Inputs are functions (temporal series)!!

The Control Point Parametrization

The Control Point Parametrization

n Control Points **n** Variable to optimize

END

The Control Point Parametrization

The <u>adaptive</u> Control Point Param.

Solution

GP-UCB Optimizer

GP-UCB

GP-UCB

GP-UCB

Schema

2

3

3

4

Automatic transmission

Automatic transmission

Automatic transmission

69 blocks: 2 integrators, 3 look-up tables, 3 2D look-up tables, Stateflow Chart

	Automatic Transmission					
с.	Natural languages	MTL				
φ 1	The engine (w) and the vehicle speed (v) never reach k_1 and k_2 , resp.	$\mathbf{G}\big((w \le k_1) \land (v \le k_2)\big)$				
φ ₂	If the engine speed (w) is always less than k_1 then vehicle speed (v) can not exceed k_2 in less then T sec.	$\neg \left(\mathbf{F}_{[0,T]} \left(v \ge k_2 \right) \land \mathbf{G}(w \le k_1) \right)$				
φ ₃	Within T sec the vehicle speed (v) is above k_2 and from that point on the engine speed (w) is always less then k_1	$\mathbf{F}_{[0,T]}((v \ge k_2) \wedge \mathbf{G}((w \le k_1))$				
φ ₄	A gear increase from first to fourth in under than 10 sec, ending in an engine speed (w) above k_1 within 2 sec of that, should result in a vehicle speed (v) above k_2 .	$ \begin{split} & \left(\left(g_1 \mathbf{U} g_2 \mathbf{U} g_3 \mathbf{U} g_4 \right) \wedge \mathbf{F}_{[0,10]} \left(g_4 \wedge \right. \\ & \left. \mathbf{F}_{[0,2]} (\mathbf{w} \geq \mathbf{k}_1) \right) \right) \rightarrow \mathbf{G}_{[0,10]} (g_4 \rightarrow \\ & \left. \mathbf{X} \left(g_4 \mathbf{U}_{[0,1]} \left(\mathbf{v} \geq \mathbf{k}_2 \right) \right) \right) \end{split} $				

φ	S-TaLiro			aCPP	
	1,1	3,3	7,7		
$\phi_1(k_1=4500, k_2=160)$	8,54 ± 5,72	10 ± 10,1	11,69 ± 17,63	4,40 ± 1,01	
$\phi_2(k_1=4500, k_2=85)$	63,90 ± 53,20	124,82 ± 101,51	1686,9 ± 589,57	$18,2 \pm 3,5$	
$\varphi_3(k_1=4500, k_2=80)$	12,95 ± 7,37	$49,8 \pm 55,47$	199,15±175,94	$6,70 \pm 1,74$	
ϕ_4 (k ₁ =4500 , k ₂ =80)	$28,59 \pm 24,15$	32,65 ± 27,05	26,72 ± 23,98	5,33 ± 1,31	

Time = {#Simulations} x {Simulation Time} + {Optimizer time}

Time = {#Simulations} x {Simulation Time} + {Optimizer time}

Future work

- from Matlab to Java (parallelization)
- multi-objective approach
- using fmi as simulator

Acknowledges

Esteco

Luca Bortolussi

Alberto Policriti

....AND USE FORMAL METHODS