Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models

Luca Bortolussi ¹ Simone Silvetti ^{2,3}

¹ DMG, University of Trieste, Trieste, Italy lbortolussi@units.it ² DIMA, University of Udine, Udine, Italy ³ Esteco SpA, Area Science Park, Trieste, Italy simone.silvetti@gmail.com

24th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

Outline

Introduction

- Parametric Chemical Reaction Networks
- Signal Temporal Logic
- Verification: a statistical approach
- 2 Bayesian Threshold Synthesis Problem
 - Definition
 - Algorithm
- Test Case and Results

Onclusions and Future Works

Models: Parametric Chemical Reaction Networks

Consider a Parametric Chemical Reaction Network (PCRN) as a tuple $\mathcal{M} = (\mathcal{S}, \mathbf{X}, D, \mathbf{x_0}, \mathcal{R}, \Theta)$

$$r_{1}: S + I \xrightarrow{\alpha_{1}} 2I \qquad \alpha_{1} = k_{i} \cdot \frac{X_{s} \cdot X_{i}}{N}$$
$$r_{2}: I \xrightarrow{\alpha_{2}} R \qquad \alpha_{2} = k_{r} \cdot X_{i}$$

- $\theta = (\theta_1, \dots, \theta_k)$ is the vector of (kinetic) parameters, taking values in a compact hyperrectangle $\Theta \subset \mathbb{R}^k$
- a trajectory is a function $\mathbf{x}_{\theta} \colon T \to D$

The requirements: Signal Temporal Logic (STL)

Signal temporal logic is:

- a linear continuous time temporal logic.
- the atomic predicates are of the form $\mu(\mathbf{X}):=[g(\mathbf{X}) \ge 0]$ where $g: \mathbb{R}^n \to \mathbb{R}$ is a continuous function.
- the syntax is

$$\phi := \bot |\top| \mu |\neg \phi| \phi \lor \phi | \phi \mathbf{U}_{[T_1, T_2]} \phi, \tag{1}$$

Eventually and Globally Operators

$$\mathbf{F}_{[\mathcal{T}_1,\mathcal{T}_2]}\phi \equiv \top \mathbf{U}_{[\mathcal{T}_1,\mathcal{T}_2]}\phi \text{ and } \mathbf{G}_{[\mathcal{T}_1,\mathcal{T}_2]}\phi \equiv \neg \mathbf{F}_{[\mathcal{T}_1,\mathcal{T}_2]}\neg \phi$$

4

Interpretation (Boolean semantics)

$$(\mathbf{x}_{\theta}, 0) \models \mathbf{F}_{[0,50]} | X_1 - X_2 | > 10$$

Problem

$$P_{\phi}(\theta) \equiv P(\phi \mid \mathcal{M}_{\theta}) := P(\{\mathbf{x}_{\theta}(t) \in Path^{\mathcal{M}_{\theta}} \mid (\mathbf{x}_{\theta}, 0) \models \phi\})$$

Problem

$$P_{\phi}(\theta) \equiv P(\phi \mid \mathcal{M}_{\theta}) := P(\{\mathbf{x}_{\theta}(t) \in Path^{\mathcal{M}_{\theta}} \mid (\mathbf{x}_{\theta}, 0) \models \phi\})$$

Problem

$$P_{\phi}(\theta) \equiv P(\phi \mid \mathcal{M}_{\theta}) := P(\{\mathbf{x}_{\theta}(t) \in Path^{\mathcal{M}_{\theta}} \mid (\mathbf{x}_{\theta}, 0) \models \phi\})$$

Problem

$$P_{\phi}(\theta) \equiv P(\phi \mid \mathcal{M}_{\theta}) := P(\{\mathbf{x}_{\theta}(t) \in Path^{\mathcal{M}_{\theta}} \mid (\mathbf{x}_{\theta}, 0) \models \phi\})$$

Problem

$$P_{\phi}(\theta) \equiv P(\phi \mid \mathcal{M}_{\theta}) := P(\{\mathbf{x}_{\theta}(t) \in Path^{\mathcal{M}_{\theta}} \mid (\mathbf{x}_{\theta}, 0) \models \phi\})$$

Gaussian Processes

Definition

A random variable $f(\theta), \theta \in \Theta$ is a GP

$$f \sim \mathcal{GP}(m,k) \iff (f(\theta_1), f(\theta_2), \dots, f(\theta_n)) \sim \mathcal{N}(\mathbf{m}, K)$$

where $\mathbf{m} = (m(\theta_1; h_1), m(\theta_2; h_1), \dots, m(\theta_n; h_1))$ and $K_{ij} = k(f(\theta_i), f(\theta_j); h_2)$

Smoothed Model Checking

Hypothesis: The reaction rate $\alpha_i(\mathbf{x}, \theta)$ depends smoothly on θ and polynomially on \mathbf{x} .

Goal: Approximate $\theta \to P_{\phi}(\theta)$ with a surrogate model $\theta \to \tilde{P}_{\phi}(\theta)$.

Problem: We cannot apply GP directly.

Smoothed Model Checking

Hypothesis: The reaction rate $\alpha_i(\mathbf{x}, \theta)$ depends smoothly on θ and polynomially on \mathbf{x} .

Goal: Approximate $\theta \to P_{\phi}(\theta)$ with a surrogate model $\theta \to \tilde{P}_{\phi}(\theta)$.

Problem: We cannot apply GP directly.

Idea
Reconstructing a real-valued latent function
$$f(\theta)$$
, which is related to $P_{\phi}(\theta)$ and which can
be approximated through GP regression.

$$f(\theta) = \underbrace{\Psi}_{\text{probit}}(P_{\phi}(\theta)) \iff P_{\phi}(\theta) = \int_{-\infty}^{f(\theta)} \mathcal{N}(0, 1)$$

Smoothed Model Checking

Hypothesis: The reaction rate $\alpha_i(\mathbf{x}, \theta)$ depends smoothly on θ and polynomially on \mathbf{x} .

Goal: Approximate $\theta \to P_{\phi}(\theta)$ with a surrogate model $\theta \to \tilde{P}_{\phi}(\theta)$.

Problem: We cannot apply GP directly.

Idea Reconstructing a real-valued latent function $f(\theta)$, which is related to $P_{\phi}(\theta)$ and which can be approximated through GP regression. $f(\theta) = \underbrace{\Psi}_{\text{probit}}(P_{\phi}(\theta)) \iff P_{\phi}(\theta) = \int_{-\infty}^{f(\theta)} \mathcal{N}(0, 1)$

Statistical Surrogates Model

From $\{P_{\phi}(\theta_1), \ldots, P_{\phi}(\theta_n)\}$ we obtain $\tilde{P}_{\phi}(\theta)$ as a statistical surrogate models of $P_{\phi}(\theta)$.

- we can calculate: $p\left(\tilde{P}_{\phi}(\theta) \in [\lambda^{-}, \lambda^{+}]\right)$, mean, variance, etc.
- large training set \Rightarrow a more accurate model.

Partitioning the parameter space Θ in three classes \mathcal{P}_{α} (positive), \mathcal{N}_{α} (negative) and \mathcal{U}_{α} (undefined)

¹ M. Češka, F. Dannenberg, N. Paoletti, M. Kwiatkowska and L. Brim, Precise parameter synthesis for stochastic biochemical systems, Acta Informatica 56(6), 2017, 589 - 623.

Partitioning the parameter space Θ in three classes \mathcal{P}_{α} (positive), \mathcal{N}_{α} (negative) and \mathcal{U}_{α} (undefined)

Partitioning the parameter space Θ in three classes \mathcal{P}_{α} (positive), \mathcal{N}_{α} (negative) and \mathcal{U}_{α} (undefined)

Bayesian Threshold Synthesis Problem
•
$$\mathcal{P}_{\alpha} = \{\theta \in \Theta \mid p(\tilde{P}_{\phi}(\theta) > \alpha) > \delta\}$$

• $\mathcal{N}_{\alpha} = \{\theta \in \Theta \mid p(\tilde{P}_{\phi}(\theta) < \alpha) > \delta\}$
• $\mathcal{U}_{\alpha} = \Theta \setminus (\mathcal{P}_{\alpha} \cup \mathcal{N}_{\alpha}), \frac{vol(U_{\alpha})}{vol(\Theta)} < \epsilon.$

Bayesian Threshold Synthesis Problem

•
$$\mathcal{P}_{\alpha} = \{\theta \in \Theta \mid p(\tilde{P}_{\phi}(\theta) > \alpha) > \delta\}$$

• $\mathcal{N}_{\alpha} = \{\theta \in \Theta \mid p(\tilde{P}_{\phi}(\theta) < \alpha) > \delta\}$
• $\mathcal{U}_{\alpha} = \Theta \setminus (\mathcal{P}_{\alpha} \cup \mathcal{N}_{\alpha}), \frac{\text{vol}(\mathcal{U}_{\alpha})}{\text{vol}(\Theta)} < \epsilon.$
 $\delta \in (0, 1)$ is the confidence probability.

Lower and Upper Bound functions

$$\begin{split} & p\left(\tilde{P}_{\phi}(\theta) < \lambda^{+}(\theta, \delta)\right) > \delta \\ & p\left(\tilde{P}_{\phi}(\theta) > \lambda^{-}(\theta, \delta)\right) > \delta \end{split}$$

Bayesian Threshold Synthesis Problem

•
$$\mathcal{P}_{\alpha} = \{ \theta \in \Theta \mid p(\tilde{P}_{\phi}(\theta) > \alpha) > \delta \}$$

•
$$\mathcal{N}_{lpha} = \{ heta \in \Theta \mid p(\tilde{P}_{\phi}(heta) < lpha) > \delta \}$$

•
$$\mathcal{U}_{\alpha} = \Theta \setminus (\mathcal{P}_{\alpha} \cup \mathcal{N}_{\alpha}), \ \frac{\textit{vol}(\mathcal{U}_{\alpha})}{\textit{vol}(\Theta)} < \epsilon.$$

 $\delta \in (0, 1)$ is the confidence probability.

Lower and Upper Bound functions

$$\begin{split} & p\left(\tilde{P}_{\phi}(\theta) < \lambda^{+}(\theta, \delta)\right) > \delta \\ & p\left(\tilde{P}_{\phi}(\theta) > \lambda^{-}(\theta, \delta)\right) > \delta \end{split}$$

Bayesian Threshold Synthesis Problem

•
$$\mathcal{P}_{\alpha} = \{\theta \in \Theta \mid \lambda^{-}(\theta, \delta) > \alpha\}$$

• $\mathcal{N}_{\alpha} = \{\theta \in \Theta \mid \lambda^{+}(\theta, \delta) < \alpha\}$
• $\mathcal{U}_{\alpha} = \Theta \setminus (\mathcal{P}_{\alpha} \cup \mathcal{N}_{\alpha}), \frac{\operatorname{vol}(\mathcal{U}_{\alpha})}{\operatorname{vol}(\Theta)} < \epsilon.$

Algorithm I - Grid

Algorithm II - Training Set

Algorithm III - Prediction

Algorithm IV - Tessellation

Algorithm V - Tessellation

Algorithm VI - Tessellation

Algorithm VII - Tessellation

Algorithm VIII - Tessellation

Algorithm IX - Tessellation

Algorithm X - Tessellation

Algorithm XI - Active Learning Step

Algorithm XII - Update

Algorithm XIII - Update

Algorithm XIV - Update

Algorithm XV - Active Learning Step

Algorithm XVI- Update

Algorithm XVII - Update

Algorithm XVIII - Update

Solution

Continuity of Gaussian Processes.

Solution

Continuity of Gaussian Processes.

Epidemic Model: SIR

SIR Model

$$r_1: S + I \xrightarrow{\alpha_1} 2I \qquad \alpha_1 = k_i \cdot \frac{X_s \cdot X_i}{N}$$

 $r_2: I \xrightarrow{\alpha_2} R \qquad \alpha_2 = k_r \cdot X_i$

Disease Extinction

$$\phi = (I > 0) \mathcal{U}_{[100, 120]} (I = 0)$$

Bayesian Threshold Synthesis Problem

- volume tolerance: $\epsilon = 0.1$
- threshold: $\alpha = 0.1$

Case	$k_i imes k_r$	h -grid	Time (sec)
1	[0.005, 0.3] imes 0.05	0.0007	17.92 ± 2.61
2	$0.12 \times [0.005, 0.2]$	0.0005	4.87 ± 0.01
3	$[0.005, 0.3] \times [0.005, 0.2]$	(0.003,0.002)	116.4 ± 4.06

Case	$k_i imes k_r$	h -grid	Time (sec)
1	[0.005, 0.3] × 0.05	0.0007	17.92 ± 2.61
2	$0.12 \times [0.005, 0.2]$	0.0005	4.87 ± 0.01
3	$[0.005, 0.3] \times [0.005, 0.2]$	(0.003,0.002)	116.4 ± 4.06

Case	$k_i \times k_r$	h -grid	Time (sec)
1	[0.005, 0.3] imes 0.05	0.0007	17.92 ± 2.61
2	0.12 imes [0.005, 0.2]	0.0005	$\textbf{4.87} \pm \textbf{0.01}$
3	$[0.005, 0.3] \times [0.005, 0.2]$	(0.003,0.002)	116.4 ± 4.06

Case	$k_i imes k_r$	h -grid	Time (sec)
1	[0.005, 0.3] imes 0.05	0.0007	17.92 ± 2.61
2	$0.12 \times [0.005, 0.2]$	0.0005	4.87 ± 0.01
3	$[0.005, 0.3] \times [0.005, 0.2]$	(0.003,0.002)	$\textbf{116.4} \pm \textbf{4.06}$

Conclusions

- Bayesian version of the Threshold Synthesis Problem
- Smoothed Model Checking + Active Learning Approach
- good performance in terms of execution time w.r.t [Češka et al.]², retaining good accuracy at the price of having only statistical guarantees.

²M. Češka, F. Dannenberg, N. Paoletti, M. Kwiatkowska and L. Brim, Precise parameter synthesis for stochastic biochemical systems, Acta Informatica 56(6), 2017, 589 - 623.

Future Works

- leveraging GPU Computing
- adaptive grid approach to tessellate the parameter space
- use GP reconstruction tailored for grid dataset
- combined approach with numerical methods of [Češka et al.]

Thank You